Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474288

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aß) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Osteoartrite , Humanos , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Estudos Transversais , Multimorbidade , Inflamação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38048936

RESUMO

The factor RasGEF1b is a Ras guanine exchange factor involved in immune responses. Studies have also implicated RasGEF1b in the CNS development. It is still limited the understanding of the role of RasGEF1b in CNS functioning. Using RasGEF1b deficient mice (RasGEF1b-cKO), we investigated the impact of this gene deletion in behavior, cognition, brain neurochemistry and microglia morphology. We showed that RasGEF1b-cKO mice display spontaneous hyperlocomotion and anhedonia. RasGEF1b-cKO mice also exhibited compulsive-like behavior that was restored after acute treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (5 mg/kg). A down-regulation of mRNA of dopamine receptor (Drd1, Drd2, Drd4 and Drd5) and serotonin receptor genes (5Htr1a, 5Htr1b and 5Htr1d) was observed in hippocampus of RasGEF1b-cKO mice. These mice also had reduction of Drd1 and Drd2 in prefrontal cortex and 5Htr1d in striatum. In addition, morphological alterations were observed in RasGEF1b deficient microglia along with decreased levels of hippocampal BDNF. We provided original evidence that the deletion of RasGEF1b leads to unique behavioral features, implicating this factor in CNS functioning.


Assuntos
Encéfalo , Inibidores Seletivos de Recaptação de Serotonina , Animais , Camundongos , Cognição , Fluoxetina/farmacologia , Córtex Pré-Frontal , Receptores de Dopamina D5
3.
Sci Rep ; 13(1): 16358, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773430

RESUMO

Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.


Assuntos
Quimiocina CX3CL1 , Hipocampo , Animais , Camundongos , Quimiocina CX3CL1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Inflamação/complicações , Camundongos Endogâmicos C57BL , Obesidade/complicações , Fármacos Atuantes sobre Aminoácidos Excitatórios
4.
Brain Behav Immun Health ; 30: 100652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396335

RESUMO

Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.

5.
Neurochem Int ; 165: 105508, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863495

RESUMO

Synthetic cannabidiol (CBD) derivative VCE-004.8 is a peroxisome proliferator-activated receptor gamma (PPARγ) and cannabinoid receptor type 2 (CB2) dual agonist with hypoxia mimetic activity. The oral formulation of VCE-004.8, termed EHP-101, possesses anti-inflammatory properties and is currently in phase 2 clinical trials for relapsing forms of multiple sclerosis. The activation of PPARγ or CB2 receptors exerts neuroprotective effects by dampening neuroinflammation in ischemic stroke models. However, the effect of a dual PPARγ/CB2 agonist in ischemic stroke models is not known. Here, we demonstrate that treatment with VCE-004.8 confers neuroprotection in young mice subjected to cerebral ischemia. Male C57BL/6J mice, aged 3-4 months, were subjected to 30-min transient middle cerebral artery occlusion (MCAO). We evaluated the effect of intraperitoneal VCE-004.8 treatment (10 or 20 mg/kg) either at the onset of reperfusion or 4h or 6h after the reperfusion. Seventy-two hours after ischemia, animals were subjected to behavioral tests. Immediately after the tests, animals were perfused, and brains were collected for histology and PCR analysis. Treatment with VCE-004.8 either at the onset or 4h after reperfusion significantly reduced infarct volume and improved behavioral outcomes. A trend toward reduction in stroke injury was observed in animals receiving the drug starting 6h after recirculation. VCE-004.8 significantly reduced the expression of pro-inflammatory cytokines and chemokines involved in BBB breakdown. Mice receiving VCE-004.8 had significantly lower levels of extravasated IgG in the brain parenchyma, indicating protection against stroke-induced BBB disruption. Lower levels of active matrix metalloproteinase-9 were found in the brain of drug-treated animals. Our data show that VCE-004.8 is a promising drug candidate for treating ischemic brain injury. Since VCE-004.8 has been shown to be safe in the clinical setting, the possibility of repurposing its use as a delayed treatment option for ischemic stroke adds substantial translational value to our findings.


Assuntos
Isquemia Encefálica , Canabidiol , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Neuroproteção , PPAR gama/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos Endogâmicos C57BL , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças
6.
Curr Neuropharmacol ; 21(2): 219-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36154605

RESUMO

Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid ß peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Peptídeos beta-Amiloides , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
7.
Curr Neuropharmacol ; 21(2): 235-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36503452

RESUMO

The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Microglia , Cocaína/farmacologia , Anfetaminas/farmacologia
8.
Pharmacol Rep ; 74(5): 1099-1106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36112318

RESUMO

BACKGROUND: The phytocannabinoid cannabidiol (CBD) has previously shown to have anticonvulsant effects in preclinical and clinical studies. Recently, CBD has been approved to treat certain types of drug-resistant epileptic syndromes. However, the underlying mechanism of action remains unclear. The phosphatidylinositol 3-kinase (PI3K) signaling pathway has been proposed to modulate seizures and might be recruited by CBD. Thus, we tested the hypothesis that the anticonvulsant effect of CBD involves PI3K in a seizure model induced by pentylenetetrazole (PTZ). METHODS: We employed pharmacological and genetic approaches to inhibit PI3K and quantified its effects on seizure duration, latency, and number. RESULTS: PI3K genetic ablation increased the duration and number of seizures. CBD inhibited PTZ-induced seizures in mice. Genetic deletion of PI3K or pretreatment with the selective inhibitor LY294002 prevented CBD effects. CONCLUSION: Our data strengthen the hypothesis that the CBD anticonvulsant effect requires the PI3K signaling pathway.


Assuntos
Canabidiol , Pentilenotetrazol , Animais , Camundongos , Pentilenotetrazol/toxicidade , Canabidiol/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo
9.
Trends Neurosci ; 45(1): 1-2, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34776238

RESUMO

Microglia play a major role in certain neuropathological conditions. In a recent paper, Reusch et al. demonstrated how signaling pathways downstream of cannabinoid type 2 (CB2) and toll-like receptors (TLRs) converge in these cells. The findings suggest that CB2 receptors play a permissive role in microglia activation mediated by TLRs.


Assuntos
Microglia , Receptores Toll-Like , Humanos , Microglia/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo
10.
Sci Rep ; 11(1): 15989, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362959

RESUMO

Different data suggest that microglia may participate in the drug addiction process as these cells respond to neurochemical changes induced by the administration of these substances. In order to study the role of microglia in drug abuse, Swiss mice aged 8-9 weeks were treated with the CSF1R inhibitor PLX3397 (40 mg/kg, p.o.) and submitted to behavioral sensitization or conditioned place preference (CPP) induced by cocaine (15 mg/kg, i.p.). Thereafter, brains were used to evaluate the effects of CSF1R inhibition and cocaine administration on morphological, biochemical and molecular changes. CSF1R inhibition attenuated behavioral sensitization, reduced the number of Iba-1+ cells and increased ramification and lengths of the branches in the remaining microglia. Additionally, both cocaine and PLX3397 increased the cell body to total cell size ratio of Iba-1+ cells, as well as CD68+ and GFAP+ stained areas, suggesting an activated pattern of the glial cells. Besides, CSF1R inhibition increased CX3CL1 levels in the striatum, prefrontal cortex and hippocampus, as well as reduced CX3CR1 expression in the hippocampus. In this region, cocaine also reduced BDNF levels, an effect that was enhanced by CSF1R inhibition. In summary, our results suggest that microglia participate in the behavioral and molecular changes induced by cocaine. This study contributes to the understanding of the role of microglia in cocaine addiction.


Assuntos
Aminopiridinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/toxicidade , Microglia/efeitos dos fármacos , Pirróis/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/patologia , Condicionamento Clássico , Inibidores da Captação de Dopamina/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Inibição Psicológica , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia
11.
Pharmacol Rep ; 73(6): 1680-1693, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34218397

RESUMO

BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide. While the exact pathogenesis is yet to be elucidated, the role of neuro-immune signaling has recently emerged. Despite major advances in pharmacotherapy, antidepressant use is marred by limited efficacy and potential side effects. Cannabidiol (CBD), a phytocannabinoid, exerts antidepressant-like effects in experimental animals. This study investigated the impact of CBD on sickness behavior (SB), a measure of depressive-like response, and neuro-immune changes induced by lipopolysaccharides (LPS) in mice. METHODS: Socially isolated rodents were administered with LPS to trigger SB. and treated with CBD or its vehicle. Animals were submitted to forced swimming test, to evaluate depressive-like behavior, and to open field test, to evaluate locomotory activity. Immediately after behavioral analyses, animals were euthanized and had their hypothalamus, prefrontal cortex and hippocampus dissected, to proceed neurotrophins and cytokines analyses. ELISA was used to detect IL-1ß, BDNF and NGF; and cytometric beads array to measure IL-2, IL-4, IL-6, IFN-γ, TNF-α and IL-10 levels. RESULTS: CBD effectively prevented SB-induced changes in the forced swim test without altering spontaneous locomotion. This phytocannabinoid also partially reversed LPS-evoked IL-6 increase in both the hypothalamus and hippocampus. In addition, CBD prevented endotoxin-induced increase in BDNF and NGF levels in the hippocampus of SB animals. CONCLUSIONS: Apparently, CBD prevents both behavioral and neuro-immunological changes associated with LPS-induced SB, which reinforces its potential use as an antidepressant which modulates neuroinflammation. This opens up potentially new therapeutic avenues in MDD.


Assuntos
Encéfalo/efeitos dos fármacos , Canabidiol/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Comportamento de Doença/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/fisiopatologia
12.
Neurosci Lett ; 756: 135948, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33979699

RESUMO

INTRODUCTION: Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3ß pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3ß pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS: Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1ß, IL-6, IL-10, TNF e IL-12p70. RESULTS: Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS: Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.


Assuntos
Citocinas/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Adulto , Idoso , Feminino , Hipocampo/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Adulto Jovem
13.
J Neuroimmunol ; 354: 577534, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713941

RESUMO

The role of inflammation and immune cells has been demonstrated in neurological diseases, including epilepsy. Leukocytes, as well as inflammatory mediators, contribute to abnormal processes that lead to a reduction in seizure threshold and synaptic reorganization. In this sense, identifying different phenotypes of circulating immune cells is essential to understanding the role of these cells in epilepsy. Immune cells can express a variety of surface markers, including neurotransmitter receptors, such as serotonin and dopamine. Alteration in these receptors expression patterns may affect the level of inflammatory mediators and the pathophysiology of epilepsy. Therefore, in the current study, we evaluated the expression of dopamine and serotonin receptors on white blood cells from patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Blood samples from 17 patients with TLE-HS and 21 controls were collected. PBMC were isolated and stained ex vivo for flow cytometry. We evaluated the expression of serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4), and dopamine receptors (D1, D2, D3, D4, and D5) on the cell surface of lymphocytes and innate immune cells (monocytes and granulocytes). Our results demonstrated that innate cells and lymphocytes from patients with TLE-HS showed high mean fluorescent intensity (MFI) for 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 compared to controls. No difference was observed for 5-HT2B. For dopamine receptors, the expression of D1, D2, D4, and D5 receptors was higher on innate cells from patients with TLE-HS when compared to controls for the MFI. Regarding lymphocytes population, D2 expression was increased in patients with TLE-HS. In conclusion, there are alterations in the expression of serotonin and dopamine receptors on immune blood cells of patients with TLE-HS. Although the biological significance of these findings still needs to be further investigated, these changes may contribute to the understanding of TLE-HS pathophysiology.


Assuntos
Epilepsia do Lobo Temporal/imunologia , Granulócitos/imunologia , Monócitos/imunologia , Receptores Dopaminérgicos/imunologia , Receptores de Serotonina/imunologia , Adulto , Epilepsia do Lobo Temporal/metabolismo , Feminino , Granulócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo
14.
Neuroimmunomodulation ; 27(2): 87-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33176302

RESUMO

INTRODUCTION: Major depressive disorder is considered a global public health problem. Inflammatory processes are likely involved in its pathophysiology, but the underlying mechanisms have remained uncertain.Here, we used the model of systemic lipopolysaccharide (LPS) injection to test the hypothesis that depressive-like behaviors occur along with changes in the levels of cytokines and brain-derived neurotrophic factor (BDNF) in the hippocampus (HC), prefrontal cortex (PFC), and hypothalamus (HT), and can be prevented by dexamethasone administration. METHODS: Adult C57Bl/6 male mice were first isolated for 10 days, and thereafter received an injection of dexamethasone (6 mg/kg, intraperitoneal [i.p.]), saline followed by LPS (0.83 mg/kg, i.p.), or saline. After 6 h, animals were subjected to the forced-swim test (FST) and open-field tests. Immediately after the behavioral tests, they were euthanized and their brains were collected for the biochemical analyses. RESULTS: LPS increased the immobility time and reduced the distance travelled in the FST and open-field test, respectively. Dexamethasone increased the immobility time in saline-treated mice but reduced this behavior in the LPS group. LPS increased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-γ in most of the regions evaluated. Dexamethasone prevented LPS-induced IL-6 in the HC, PFC, and HT. Interestingly, dexamethasone increased IL-4 and IL-10 levels in both the LPS- and saline-treated groups. Although dexamethasone reduced BDNF in saline-treated mice, it prevented LPS-induced reduction in this neurotrophic factor. CONCLUSION: In summary, dexamethasone decreased proinflammatory and increased anti-inflammatory levels of cytokines and prevented a reduction in BDNF levels induced by the inflammatory stimulus. Thus, the attenuation of depressive-like behavior induced by dexamethasone may be related to the effects on these parameters.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Animais , Comportamento Animal , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos
15.
Int Immunopharmacol ; 88: 106919, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871475

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is one of the main animal models used for the study of Multiple Sclerosis (MS). Long-chain lipophilic amino alcohols with immunoregulatory activities have already been studied in some models of inflammatory diseases, but the action of these compounds in EAE and MS is still unknown. In this study, we investigated whether the lipophilic amino alcohol 4b would act to improve the clinical signs of EAE and reduce the demyelination process and the neuroinflammatory parameters in the spinal cord, as well as the inflammatory process in the inguinal lymph nodes, of C57Bl/6 mice induced with EAE after stimulation with MOG35-55 and pertussis toxin. The 4b treatment (1.0 mg/kg/day) was orally administered, starting on the day of onset of clinical signs of the disease (10th) and ending on the 20th day after immunization. This treatment was able to reduce the cell count on the inguinal lymph nodes, the migration of inflammatory cells into the central nervous system (CNS), as well as the processes of microgliosis, astrogliosis, and the production of chemokines and pro-inflammatory cytokines, thus increasing the IL-10 anti-inflammatory cytokine levels in EAE mice. The inhibition of Akt phosphorylation in the CNS of EAE mice after treatment with 4b indicates that the immunoregulatory action of 4b is related to the PI3K/Akt signaling pathway. Our results indicate the immunoregulatory efficacy of the new compound 4b in the control of some inflammatory parameters and in the glial proliferation. In addition, 4b was able to reduce the demyelination of neurons and the worsening of clinical signs of EAE as effectively as the compound FTY720, the first oral drug approved by the FDA for the treatment of MS.


Assuntos
Amino Álcoois/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Amino Álcoois/farmacologia , Animais , Citocinas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Fatores Imunológicos/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia
16.
Neuropharmacology ; 176: 108156, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574650

RESUMO

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt)/mechanistic target of rapamycin (mTOR) signaling pathway has been associated with several pathologies in the central nervous system (CNS), including epilepsy. There is evidence supporting the hypothesis that the PI3Kγ signaling pathway may mediate the powerful anticonvulsant properties associated with the cannabinoidergic system. This work aims to investigate if the anticonvulsant and neuroprotective effects of cannabidiol (CBD) are mediated by PI3Kγ. In vitro and in vivo experiments were performed on C57Bl/6 wild-type (WT) and PI3Kγ-/- mice. Behavioral seizures were induced by bilateral intra-hippocampal pilocarpine microinjection. Twenty-four hours after the first behavioral seizure, animals were perfused and their brains removed and processed, for histological analysis of neurodegeneration, microgliosis and astrocytosis. Primary cultures of hippocampal neurons were used for glutamate-induced cell death assay. CDB increased latency and reduced the severity of pilocarpine-induced behavioral seizures, as well as prevented postictal changes, such as neurodegeneration, microgliosis and astrocytosis, in WT animals, but not in PI3Kγ-/-. CBD in vivo effects were abolished by pharmacological inhibition of cannabinoid receptor or mTOR. In vitro, PI3Kγ inhibition or deficiency also changed CBD protection observed in glutamate-induced cell death assay. Thus, we suggest that the modulation of PI3K/mTOR signaling pathway is involved in the anticonvulsant and neuroprotective effects of CBD. These findings are important not only for the elucidation of the mechanisms of action of CBD, which are currently poorly understood, but also to allow the prediction of therapeutic and side effects, ensuring efficacy and safety in the treatment of patients with epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Convulsões/metabolismo , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/uso terapêutico , Canabidiol/uso terapêutico , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase/deficiência , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pilocarpina/toxicidade , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Convulsões/induzido quimicamente , Resultado do Tratamento
17.
Brain Res Bull ; 155: 1-10, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756420

RESUMO

Depression and anxiety have been reported as the major neuropsychiatric consequences following stroke. Minocycline, a neuroprotective drug has minimized depressive symptoms in patients with major depressive disorders and anxiety-like symptoms. In addition, minocycline demonstrated efficacy and seemed a promising neuroprotective agent in acute stroke patients. The present studied evaluated the effects of minocycline treatment on the depression and anxiety-like behaviors, brain damage and expression of inflammatory and neuroprotective mediators after transient global cerebral ischemia in C57BL/6 mice. Brain ischemia was induced by bilateral occlusion of the common carotids (BCCAo) for 25 min and subsequent reperfusion. Sham and BCCAo animals received minocycline at a dose of 30 mg/kg by intraperitoneal injection during 14 days. The locomotor activity, depression and anxiety-like behaviors were assessed by open field, forced swim and elevated plus maze tests, respectively. Then, the brains were removed and processed to evaluate brain damage by histological and morphometric analysis, hippocampal neurodegeneration using Fluoro-Jade C histochemistry, microglial activity using iba-1 immunohistochemistry, brain levels of TNF, IFN-γ, IL-6, IL-10, IL-12p70 and CCL2 by CBA, CX3CL1 and BDNF by ELISA assays. The animals developed depression and anxiety-like behaviors post-stroke and minocycline treatment prevented those neurobehavioral changes. Moreover, minocycline-treated BCCAo animals showed less intense brain damage in the cerebral cortex, brainstem and cerebellum as well as significantly reduced hippocampal neurodegeneration. BCCAo groups exhibited up-regulation of some cytokines at day 14 after ischemia and brain levels of CX3CL1 and BDNF remained unaltered. Our data indicate that the depression and anxiety-like behavioral improvements promoted by minocycline treatment might be related to its neuroprotective effect after brain ischemia in mice.


Assuntos
Ansiedade/prevenção & controle , Depressão/prevenção & controle , AVC Isquêmico/prevenção & controle , Minociclina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalite/prevenção & controle , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , AVC Isquêmico/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia
18.
Front Pharmacol ; 10: 1345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798451

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the main cause of dementia. Its major symptom is memory loss, which is a result of neuronal cell death, which is accompanied by neuroinflammation. Some studies indicate the overactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) pathway in this disease, being, thus, a potential target for pharmacological treatment. Here, we used a transgenic mouse model of AD that expresses a mutant amyloid-ß precursor protein (T41 mice) to investigate the effects of dactolisib (alternative name: NVP-BEZ235, abbreviation BEZ), a dual PI3K/mTOR inhibitor. Ten-months-old T41 animals were treated for 14 days with BEZ or vehicle via oral gavage and then submitted to social memory, open field and contextual conditioned fear tests. Hippocampal slices were prepared and Aß1-42 content, NeuN, Iba-1, CD68 and GFAP were evaluated. Tissues were further processed to evaluate cytokines levels through cytometric bead array. The treatment with BEZ (5 mg/kg) reduced social memory impairment in T41 mice. However, BEZ did not have any effect on altered Aß levels, NeuN, or GFAP staining. The drug reduced the CD68/Iba-1 ratio in CA3 region of hippocampus. Finally, BEZ diminished IL-10 levels in T41 mice. Thus, although its mechanisms are not clear, BEZ protects against memory impairment, reduces microglial activation and reestablishes IL-10 levels, revealing beneficial effects, which should be further investigated for the treatment of AD.

19.
Neuropharmacology ; 160: 107785, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541651

RESUMO

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-ß (Aß) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aß induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aß injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aß accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aß stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzamidas/farmacologia , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Regulação Alostérica , Peptídeos beta-Amiloides/efeitos adversos , Animais , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/efeitos adversos , Pirazóis/administração & dosagem , Receptor de Glutamato Metabotrópico 5/metabolismo
20.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075861

RESUMO

A large body of experimental evidence suggests that neuroinflammation is a key pathological event triggering and perpetuating the neurodegenerative process associated with many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS activates various intracellular molecules, which alter the expression of a plethora of inflammatory mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with neurodegenerative diseases. However, the serotype, route of administration, and number of injections of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this toxin that could underpin the pathological events linked to the neurodegenerative process.


Assuntos
Inflamação/patologia , Degeneração Neural/patologia , Sistema Nervoso/patologia , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos , Doenças Neurodegenerativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...